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On the Chebyshev collocation spectral approach to stability
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SUMMARY

In this paper, the temporal development of small disturbances in a pressure-driven fluid flow through a
channel filled with a saturated porous medium is investigated. The Brinkman flow model is employed
in order to obtain the basic flow velocity distribution. Under normal mode assumption, the linearized
governing equations for disturbances yield a fourth-order eigenvalue problem, which reduces to the well-
known Orr–Sommerfeld equation in some limiting cases solved numerically by a spectral collocation
technique with expansions in Chebyshev polynomials. The critical Reynolds number Rec, the critical wave
number �c, and the critical wave speed cc are obtained for a wide range of the porous medium shape
factor parameter S. It is found that a decrease in porous medium permeability has a stabilizing effect on
the fluid flow. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Transport processes through porous media play important roles in diverse applications, such as
in geothermal operations, petroleum industries, thermal insulation, design of solid-matrix heat
exchangers, chemical catalytic reactors, and many others [1, 2]. Theoretical consideration of fluid
flow in porous media has received great attention in recent years. Most of the earlier studies [3, 4]
were based on Darcy’s law, which states that the volume-averaged velocity is proportional to the
pressure gradient. The Darcy model is shown to be valid under the conditions of low velocities
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and small porosity [5]. However, in many practical situations the porous medium is bounded by
an impermeable wall, has higher flow rates, and reveals non-uniform porosity distribution in the
near wall region, making Darcy’s law inapplicable. To model a real physical situation better the
Brinkman flow model is employed, since it can predict hydraulics through such hyperporous media
as noted by Nield and Bejan [6]. The Brinkman model also takes into account the presence of
a solid boundary through the addition of a viscous term in Darcy’s law and, furthermore, it is
generally applicable for porous media with both low and high permeabilities [7]. The effects of
variable viscosity on the instability of flow and temperature fields in a water-saturated porous
medium are discussed by Kassoy and Zebib [5], Straus and Schubert [4], and Gray et al. [8]. In all
these studies, theoretical investigation on the temporal stability of fluid flow in a saturated porous
medium with respect to the Brinkman model has not been conducted.

Motivated by scarcity of literature on the application of the Chebysev collocation spec-
tral method on stability analysis of fluid flow in porous media, the temporal development of
small disturbances in a channel filled with a saturated porous medium is investigated. The
Brinkman model is employed in order to obtain the flow basic velocity profile and the linear
stability analysis is performed. The resulting fourth-order eigenvalue problem, which reduces
to a well-known Orr–Sommerfeld equation under some limiting cases, is solved numerically
using the Chebyshev spectral collocation method. The use of spectral methods to investigate the
stability of various fluid flow problems has increased in recent years. The popularity of spectral
methods comes from the fact that they have been proven to produce more accurate results than
the finite difference and finite element numerical schemes [9–12]. The paper is structured as
follows. In Section 2, the problem is formulated and the solution for the steady basic flow is
obtained. The eigenvalue problem for temporal development of small disturbances is derived in
Section 3. In Section 4, the Chebyshev spectral collocation numerical technique is employed to
solve the resulting eigenvalue problem and the pertinent results are discussed quantitatively in
Section 5.

2. MATHEMATICAL FORMULATION

Consider the flow of an incompressible viscous fluid in a parallel channel filled with a saturated
porous medium (see Figure 1).

In two dimensions, the governing equations are
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where x and y are the streamwise and normal coordinates, respectively; u and v are the streamwise
and normal velocity, respectively; t is the time; P is the pressure; Re is the Reynolds number; and
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Figure 1. Geometry of the problem.

S is the shape factor. The flow quantities in Equations (1)–(3) have been non-dimensionalized as
follows:
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where a is the channel characteristic half-width, k the permeability parameter, U0 the characteristic
fluid velocity, � the fluid density, � the kinematic fluid viscosity, and Da the Darcy number. The
basic steady state of the flow system corresponds to a parallel flow with velocities u=U (y) and
v=0. The equation and the boundary conditions describing the basic state are [7, 13, 14]

d2U

dy2
−S2U =−A,

dU

dy
(0)=0, U (1)=0 (5)

The solution is given by

U (y, S�1)= A

S2

(
1− cosh(Sy)

cosh(S)

)
(small Darcy number) (6)

U (y, S�1)→− A

2
(y2−1)− AS2

24
(y2−1)(y2−5)+O(S4) (large Darcy number) (7)

where A=−Re�P/�x . The zeroth-order solution in Equation (7) is the familiar one that corre-
sponds to the plane Poiseuille flow, i.e. for the very large Darcy number case and in the limit of
S →0,U (y)→−A(y2−1)/2.

3. STABILITY ANALYSIS

In the stability analysis, two-dimensional disturbances will be considered, which implies that
Squire’s transformation [11, 15] is applicable. Introducing small disturbances to the basic flow as
follows:

u(x, y, t)=U (y)+ û(x, y, t), v(x, y, t)= v̂(x, y, t), p(x, y, t)= P(x)+ p̂(x, y, t) (8)
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where û, v̂, and p̂ are very small. Equation (8) is then substituted into Equations (1)–(3) and the
nonlinear terms are neglected. We obtain
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Following Orszag [10], we seek a normal mode solution for Equations (9)–(11) defined in terms
of a stream function as

�(x, y, t)=�(y)ei�(x−ct) (12)

where �(y) is the amplitude function and c,� are the disturbances wave speed and wave number,
respectively. The disturbance velocity components can be expressed as follows:

û= ��

�y
=�′(y)ei�(x−ct) (13)

v̂=−��

�x
=−i��(y)ei�(x−ct) (14)

where the prime symbol denotes differentiation with respect to y. Substituting Equations (13)–(14)
into Equations (9)–(11) and eliminating the pressure terms yield

(U−C)(�′′−�2�)−U ′′�= 1

i�Re
(�iv −(S2+2�2)�′′+(�4+S2�2)) (15)

with the boundary conditions

�(−1) = �′(−1)=0

�(1) = �′(1)=0
(16)

It is noteworthy that Equation (15) reduces to the classical Orr–Sommerfeld equation [15] when
S=0, which corresponds to a plane-Poiseuille flow situation. In order to find a non-trivial function
� satisfying Equation (15) with boundary conditions (16), the parameters �, Re, S, and c must
satisfy a certain complex eigenvalue relation, say

F(�,c, S,Re)=0 (17)

For temporal development of the disturbances, � is real and c is complex, which can be expressed as

c=cr (�, S,Re)+ ici (�, S,Re) (18)

The imaginary part of Equation (18) determines whether the disturbances grow or decay. When
�ci>0 the disturbances grow; when �ci =0 they neither grow nor decay, and in this case the
disturbance modes are said to be neutrally stable.
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4. COMPUTATIONAL APPROACH

The eigenvalue problem in Equations (15)–(16) is solved using the Chebyshev spectral collocation
method where the solution of the differential equation and its boundary conditions are expanded
as a finite series in the Chebyshev polynomials of the form

�(y)≈�N (y j )=
N∑

k=0
�̃Tk(y j ), j =0,1, . . . ,N (19)

where Tk is the kth-Chebyshev polynomial defined by

T0(y)=1, T1(y)= y, Tk+1(y)−2yTk(y)+Tk−1(y)=0 (−1�y�1) (20)

�̃k represents the unknown coefficients and are the Gauss–Lobatto collocation points [16] on the
interval [−1,1] defined by

y j =cos
� j

N
, j =0,1, . . . ,N (21)

Substituting Equation (21) into Equation (19) and requiring that the differential equation (15) be
satisfied at the N collocation points, we obtain (N+1)x(N+1) algebraic equations that form the
eigenvalue problem:

E�=cB� (22)

where

�T=(�̃0, �̃1, . . . , �̃N ) (23)

is the transpose of the column vector �. The clamped boundary conditions are incorporated
explicitly in the first two and last rows of the matrices E and B by setting
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(25)
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Table I. Computation showing the eigenvalue of the most
unstable mode (Re=20000,�=1.0, A=2).

S Wavespeed (c)

0.000000 0.20966327758363+0.00330625189812I
0.100000 0.20894714656099+0.00329946464059I
0.200000 0.20683099825483+0.00327550439674I
0.300000 0.20340796033453+0.00322443525286I
0.400000 0.19882195076488+0.00313228046581I
0.500000 0.19325306790742+0.00298405088132I
0.600000 0.18690107771857+0.00276666982581I
0.700000 0.17996955903920+0.00247113278055I
0.800000 0.17265265209722+0.00209359713090I
0.900000 0.16512546638887+0.00163543541538I
1.000000 0.15753834592603+0.00110252125421I

Table II. Computations of the critical values at which unstable modes begin to exist (A=2).

S �c Rec cc

0.0 1.02052 5772.2283 0.263997+0.000000I
0.1 1.01986 5832.2973 0.262559+0.000000I
0.2 1.01781 6015.0334 0.258313+0.000000I
0.3 1.01492 6328.7057 0.251535+0.000000I
0.4 1.01074 6787.3070 0.242499+0.000000I
0.5 1.00561 7411.1295 0.231650+0.000000I
0.6 0.99966 8227.4284 0.219445+0.000000I
0.7 0.99307 9271.2789 0.206344+0.000000I
0.8 0.98608 10586.3898 0.192782+0.000000I

where

Ẽ= i

�Re
(D4−[S2+2�2]D2+(�4+S2�2)I )+U (D2−�2 I )−U ′′ (26)

B̃=(D2−�2 I ) (27)

U =diag [U (y j )], I is the (N+1)x(N+1) identity matrix, and D is the usual differential matrix
(cf. Canuto et al. [17]). Here diag[ ] means that the entries are placed on the main diagonal of
an (N+1)x(N+1) matrix with the rest of the entries being zero, which usually results in matrix
B becoming singular. The problem is avoided by employing the idea of Weidemann and Reddy
[18], i.e. using Hermite interpolating polynomials that satisfy the boundary conditions; thus, we
obtain

�̃0=0,
N∑

n=0
D0n�̃n =0 on y=1 (28)

�̃N =0,
N∑

n=0
DNn�̃n =0 on y=−1 (29)
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5. NUMERICAL RESULTS AND DISCUSSION

Here, we emphasis that the porous medium permeability decreases with increasing positive values
of the shape factor parameter (S). The eigensolutions of the generalized eigenvalue problem
(25)–(28) obtained numerically are presented in this section. The numerical solutions have been
verified for correctness by comparing with the results obtained by Orszag [10] for S=0 and perfect
agreement is observed.

Table I shows the numerical results for the eigenvalues of the most unstable mode for increasing
values of S at fixed values of A, �, and Re. It is interesting to note that a slight increase in the
values of S has the effect of decreasing the real and imaginary parts of the wavespeed. This shows
that a decrease in the porous medium permeability has stabilizing effects on the flow. Table II

Figure 2. Basic velocity profile with increasing values of S.

Figure 3. Growth rate (�ci ) against wavenumber (�).
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Figure 4. Marginal stability curves for A=2, S=0.0, 0.5, and 0.8.

shows the critical values of the wavenumber �c, wavespeed cc, and Reynolds numbers Rec at which
unstable modes begin to exist for varying values of S. We observe that an increase in S leads
to an increase in the critical Reynolds number and a slight decrease in the critical wavespeed.
This means that the stable region in (Re,�) plane increases as the shape factor S increases (see
Figure 4). Figure 2 illustrates the axial velocity profiles; a parabolic plane-Poiseuille profile is
observed for S=0 with maximum value along the centerline and minimum at the wall. However,
for increasing values of S>0, the fluid velocity decreases and flattens out due to a gradual decrease
in the porous medium permeability. Figure 3 shows the variation in the growth rate of the most
unstable mode against the wavenumber. We observe that increasing values of S have the effect of
damping the disturbances and therefore eliminating the growth of any small disturbances in the flow
field.

6. CONCLUSION

The Chebyshev spectral collocation method is employed to investigate the temporal development
of small disturbances in a channel filled with a saturated porous medium. We obtained accurately
the critical Reynolds number Rec, critical wave number �c, and the critical wave speed cc for a
wide range of porous medium shape factor parameter S. It is observed that increasing values of
shape factor S that indicates a decrease in porous medium permeability have a stabilizing effect
on the fluid flow.
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